25.4. Using DTrace

DTrace scripts consist of a list of one or more probes, or instrumentation points, where each probe is associated with an action. Whenever the condition for a probe is met, the associated action is executed. For example, an action may occur when a file is opened, a process is started, or a line of code is executed. The action might be to log some information or to modify context variables. The reading and writing of context variables allows probes to share information and to cooperatively analyze the correlation of different events.

To view all probes, the administrator can execute the following command:

# dtrace -l | more

Each probe has an ID, a PROVIDER (dtrace or fbt), a MODULE, and a FUNCTION NAME. Refer to dtrace(1) for more information about this command.

The examples in this section provide an overview of how to use two of the fully supported scripts from the DTrace Toolkit: the hotkernel and procsystime scripts.

The hotkernel script is designed to identify which function is using the most kernel time. It will produce output similar to the following:

# cd /usr/local/share/dtrace-toolkit
# ./hotkernel
Sampling... Hit Ctrl-C to end.

As instructed, use the Ctrl+C key combination to stop the process. Upon termination, the script will display a list of kernel functions and timing information, sorting the output in increasing order of time:

kernel`_thread_lock_flags                                   2   0.0%
0xc1097063                                                  2   0.0%
kernel`sched_userret                                        2   0.0%
kernel`kern_select                                          2   0.0%
kernel`generic_copyin                                       3   0.0%
kernel`_mtx_assert                                          3   0.0%
kernel`vm_fault                                             3   0.0%
kernel`sopoll_generic                                       3   0.0%
kernel`fixup_filename                                       4   0.0%
kernel`_isitmyx                                             4   0.0%
kernel`find_instance                                        4   0.0%
kernel`_mtx_unlock_flags                                    5   0.0%
kernel`syscall                                              5   0.0%
kernel`DELAY                                                5   0.0%
0xc108a253                                                  6   0.0%
kernel`witness_lock                                         7   0.0%
kernel`read_aux_data_no_wait                                7   0.0%
kernel`Xint0x80_syscall                                     7   0.0%
kernel`witness_checkorder                                   7   0.0%
kernel`sse2_pagezero                                        8   0.0%
kernel`strncmp                                              9   0.0%
kernel`spinlock_exit                                       10   0.0%
kernel`_mtx_lock_flags                                     11   0.0%
kernel`witness_unlock                                      15   0.0%
kernel`sched_idletd                                       137   0.3%
0xc10981a5                                              42139  99.3%

This script will also work with kernel modules. To use this feature, run the script with -m:

# ./hotkernel -m
Sampling... Hit Ctrl-C to end.
^C
MODULE                                                  COUNT   PCNT
0xc107882e                                                  1   0.0%
0xc10e6aa4                                                  1   0.0%
0xc1076983                                                  1   0.0%
0xc109708a                                                  1   0.0%
0xc1075a5d                                                  1   0.0%
0xc1077325                                                  1   0.0%
0xc108a245                                                  1   0.0%
0xc107730d                                                  1   0.0%
0xc1097063                                                  2   0.0%
0xc108a253                                                 73   0.0%
kernel                                                    874   0.4%
0xc10981a5                                             213781  99.6%

The procsystime script captures and prints the system call time usage for a given process ID (PID) or process name. In the following example, a new instance of /bin/csh was spawned. Then, procsystime was executed and remained waiting while a few commands were typed on the other incarnation of csh. These are the results of this test:

# ./procsystime -n csh
Tracing... Hit Ctrl-C to end...
^C

Elapsed Times for processes csh,

         SYSCALL          TIME (ns)
          getpid               6131
       sigreturn               8121
           close              19127
           fcntl              19959
             dup              26955
         setpgid              28070
            stat              31899
       setitimer              40938
           wait4              62717
       sigaction              67372
     sigprocmask             119091
    gettimeofday             183710
           write             263242
          execve             492547
           ioctl             770073
           vfork            3258923
      sigsuspend            6985124
            read         3988049784

As shown, the read() system call used the most time in nanoseconds while the getpid() system call used the least amount of time.

All FreeBSD documents are available for download at https://download.freebsd.org/ftp/doc/

Questions that are not answered by the documentation may be sent to <freebsd-questions@FreeBSD.org>.
Send questions about this document to <freebsd-doc@FreeBSD.org>.